Trip and TripDataset Data Structures
Classes to handle datasets with baskets of products.
Trip
Class for a trip.
A trip is a sequence of purchases made at a specific time and at a specific store with given prices and a specific assortment. It can be seen as the content of a time-stamped purchase receipt with store identification.
Trip = (purchases, store, week, prices, assortment)
Source code in choice_learn/basket_models/dataset.py
__init__(purchases, prices, assortment, store=0, week=0)
Initialize the trip.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
purchases |
ndarray
|
List of the ID of the purchased items, 0 to n_items - 1 (0-indexed) Shape must be (len_basket,), the last item is the checkout item 0 |
required |
store |
int
|
Store ID, 0 to n_stores - 1 (0-indexed) |
0
|
week |
int
|
Week number, 0 to 51 (0-indexed) |
0
|
prices |
ndarray
|
Prices of all the items in the dataset Shape must be (n_items,) with n_items the number of items in the TripDataset |
required |
assortment |
Union[int, ndarray]
|
Assortment ID (int) corresponding to the assortment (ie its index in self.available_items) OR availability matrix (np.ndarray) of the assortment (binary vector of length n_items where 1 means the item is available and 0 means the item is not available) An assortment is the list of available items of a specific store at a given time |
required |
Source code in choice_learn/basket_models/dataset.py
__str__()
Return short representation of the trip.
Returns:
Type | Description |
---|---|
str
|
Representation of the trip |
Source code in choice_learn/basket_models/dataset.py
get_items_up_to_index(i)
Get items up to index i.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
i |
int
|
Index of the item to get |
required |
Returns:
Type | Description |
---|---|
ndarray
|
List of items up to index i (excluded) Shape must be (i,) |
Source code in choice_learn/basket_models/dataset.py
TripDataset
Class for a dataset of trips.
Source code in choice_learn/basket_models/dataset.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
|
n_assortments: int
property
Return the number of assortments in the dataset.
Returns:
Type | Description |
---|---|
int
|
Number of assortments in the dataset |
n_items: int
property
Return the number of items available in the dataset.
Returns:
Type | Description |
---|---|
int
|
Number of items available in the dataset |
n_stores: int
property
Return the number of stores in the dataset.
Returns:
Type | Description |
---|---|
int
|
Number of stores in the dataset |
__getitem__(index)
Return a TripDataset object populated with the trips at index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
Union[int, list, ndarray, range, slice]
|
Index or list of indices of the trip(s) to get |
required |
Returns:
Type | Description |
---|---|
Trip or list[Trip]
|
Trip at the given index or list of trips at the given indices |
Source code in choice_learn/basket_models/dataset.py
__init__(trips, available_items)
Initialize the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trips |
list[Trip]
|
List of trips Length must be n_trips |
required |
available_items |
ndarray
|
Array of availability matrices available_items[i]: availability matrix of the assortment whose ID is i (The availability matrix is a binary vector of length n_items where 1 means the item is available and 0 means the item is not available) Shape must be (n_assortments, n_items) |
required |
Source code in choice_learn/basket_models/dataset.py
__iter__()
Iterate over the trips in the dataset.
Returns:
Type | Description |
---|---|
iter
|
Iterator over the trips |
__len__()
Return the number of trips in the dataset.
Returns:
Type | Description |
---|---|
int
|
Number of trips in the dataset |
__str__()
Return short representation of the dataset.
Returns:
Type | Description |
---|---|
str
|
Representation of the dataset |
concatenate(other, inplace=False)
Add a dataset to another.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other |
object
|
Dataset to add |
required |
inplace |
bool
|
Whether to add the dataset in-place or not, by default False |
False
|
Returns:
Type | Description |
---|---|
TripDataset
|
Concatenated dataset |
Source code in choice_learn/basket_models/dataset.py
get_all_baskets()
Return the list of all baskets in the dataset.
Returns:
Type | Description |
---|---|
ndarray
|
List of baskets in the dataset |
Source code in choice_learn/basket_models/dataset.py
get_all_items()
Return the list of all items available in the dataset.
Returns:
Type | Description |
---|---|
ndarray
|
List of items available in the dataset |
get_all_prices()
Return the list of all price arrays in the dataset.
Returns:
Type | Description |
---|---|
ndarray
|
List of price arrays in the dataset |
Source code in choice_learn/basket_models/dataset.py
get_all_stores()
Return the list of all stores in the dataset.
Returns:
Type | Description |
---|---|
ndarray
|
List of stores in the dataset |
Source code in choice_learn/basket_models/dataset.py
get_all_weeks()
Return the list of all weeks in the dataset.
Returns:
Type | Description |
---|---|
ndarray
|
List of weeks in the dataset |
Source code in choice_learn/basket_models/dataset.py
get_augmented_data_from_trip_index(trip_index)
Get augmented data from a trip index.
Augmented data includes all the transactions obtained sequentially from the trip: - permuted items, - permuted, truncated and padded baskets, - padded future purchases based on the baskets, - stores, - weeks, - prices, - available items.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trip_index |
int
|
Index of the trip from which to get the data |
required |
Returns:
Type | Description |
---|---|
tuple[ndarray]
|
For each sample (ie transaction) from the trip: item, basket, future purchases, store, week, prices, available items Length must be 7 |
Source code in choice_learn/basket_models/dataset.py
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
|
get_transactions()
Return the transactions of the TripDataset.
One transaction is a triplet (store, trip, item).
Returns:
Type | Description |
---|---|
dict
|
Transactions of the TripDataset keys: trans_id values: (store, trip, item) |
Source code in choice_learn/basket_models/dataset.py
get_trip(index)
Return the trip at the given index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index |
int
|
Index of the trip to get |
required |
Returns:
Type | Description |
---|---|
Trip
|
Trip at the given index |
Source code in choice_learn/basket_models/dataset.py
iter_batch(batch_size, shuffle=False)
Iterate over a TripDataset to return batches of items of length batch_size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_size |
int
|
Batch size (number of items in the batch) |
required |
shuffle |
bool
|
Whether or not to shuffle the dataset |
False
|
Yields:
Type | Description |
---|---|
tuple[ndarray]
|
For each item in the batch: item, basket, future purchases, store, week, prices, available items Length must 7 |
Source code in choice_learn/basket_models/dataset.py
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
|