Skip to content

Available Open Source Dataset: Expedia ICDM 2013

ICDM 2013 Expedia dataset.

load_expedia(as_frame=False, preprocessing='rumnet')

Load the Expedia dataset.

Parameters:

Name Type Description Default
as_frame bool

Whether to return the original file as pd.DF, by default False

False
preprocessing str

predefined pre-processing to apply, by default None

'rumnet'
Source code in choice_learn/datasets/expedia.py
def load_expedia(as_frame=False, preprocessing="rumnet"):
    """Load the Expedia dataset.

    Parameters
    ----------
    as_frame : bool, optional
        Whether to return the original file as pd.DF, by default False
    preprocessing : str, optional
        predefined pre-processing to apply, by default None
    """
    filename = "expedia.csv"
    data_path = get_path(filename, module=DATA_MODULE)
    if not Path.exists(data_path):
        print("In order to use the Expedia dataset, please download it from:")
        print("https://www.kaggle.com/c/expedia-personalized-sort")
        print("and save it in the following location:")
        print(data_path)
        print("The downloaded train.csv file should be named 'expedia.csv'")
        raise FileNotFoundError(f"File {filename} not found in {data_path}")

    expedia_df = pd.read_csv(data_path, engine="pyarrow")
    logging.info("Expedia csv loaded")
    if as_frame:
        return expedia_df

    if preprocessing == "rumnet":
        logging.info("rumnet preprocessing selected, starting preprocessing...")
        try:
            expedia_df = pd.read_csv(
                get_path("preprocessed_expedia_rumnet.csv", module=CACHE_MODULE), engine="pyarrow"
            )
            logging.info("Loaded cached preprocessed data.")

        except FileNotFoundError:
            expedia_df.date_time = pd.to_datetime(expedia_df.date_time, format="%Y-%m-%d %H:%M:%S")
            expedia_df.loc[:, "day_of_week"] = expedia_df.loc[:, "date_time"].dt.dayofweek
            expedia_df.loc[:, "month"] = expedia_df.loc[:, "date_time"].dt.month
            expedia_df.loc[:, "hour"] = expedia_df.loc[:, "date_time"].dt.hour

            logging.info("Filtering ids with less than 1000 occurrences")
            for id_col in [
                "site_id",
                "visitor_location_country_id",
                "prop_country_id",
                "srch_destination_id",
            ]:
                value_counts = (
                    expedia_df[["srch_id", id_col]].drop_duplicates()[id_col].value_counts()
                )
                kept_ids = value_counts.index[value_counts.gt(1000)]
                for id_ in expedia_df[id_col].unique():
                    if id_ not in kept_ids:
                        expedia_df.loc[expedia_df[id_col] == id_, id_col] = -1

            logging.info("Filtering DF for price, stay length, booking window, etc.")
            # Filtering
            expedia_df = expedia_df[expedia_df.price_usd <= 1000]
            expedia_df = expedia_df[expedia_df.price_usd >= 10]
            expedia_df["log_price"] = expedia_df.price_usd.apply(np.log)
            expedia_df = expedia_df[expedia_df.srch_length_of_stay <= 14]
            expedia_df = expedia_df[expedia_df.srch_booking_window <= 365]
            expedia_df["booking_window"] = np.log(expedia_df["srch_booking_window"] + 1)
            expedia_df = expedia_df.fillna(-1)

            logging.info("Sorting DF columns")
            order_cols = [
                "srch_id",
                "prop_id",
                "prop_starrating",
                "prop_review_score",
                "prop_brand_bool",
                "prop_location_score1",
                "prop_location_score2",
                "prop_log_historical_price",
                "position",
                "promotion_flag",
                "srch_length_of_stay",
                "srch_adults_count",
                "srch_children_count",
                "srch_room_count",
                "srch_saturday_night_bool",
                "orig_destination_distance",
                "random_bool",
                "day_of_week",
                "month",
                "hour",
                "log_price",
                "booking_window",
                "site_id",
                "visitor_location_country_id",
                "prop_country_id",
                "srch_destination_id",
                "click_bool",
                "booking_bool",
            ]
            expedia_df = expedia_df[order_cols]

            logging.info("Creating dummy availabilities")
            expedia_df["av"] = 1
            asst_size = 38  # Fixed number of items in the assortment

            logging.info("Creating dummy products to reach assortment size")
            # Loop to fill the data frame with dummy products
            # next loop creates the dummy products
            for _ in range(asst_size):
                dum = (
                    expedia_df.groupby("srch_id")
                    .filter(lambda x: len(x) < asst_size)
                    .groupby("srch_id")
                    .max()
                    .reset_index(drop=False)
                )
                dum.loc[:, "booking_bool"] = 0
                dum.loc[:, "av"] = 0
                expedia_df = pd.concat([expedia_df, dum])

            # getting rid of search & prop_id and the clickbool and bookingbool
            # adding no_purchase fixed effect
            expedia_df["is_no_purchase"] = 0

            logging.info("Creating the no purchase option")
            # adding the no_purchase option to the data
            df1 = (
                expedia_df.groupby("srch_id")
                .filter(lambda x: x.booking_bool.sum() == 1)
                .groupby("srch_id")
                .max()
                .reset_index(drop=False)
            )
            df1.loc[:, "is_no_purchase"] = 1
            df1.loc[:, "log_price"] = 0
            df1.loc[:, "booking_bool"] = 0

            df2 = (
                expedia_df.groupby("srch_id")
                .filter(lambda x: x.booking_bool.sum() == 0)
                .groupby("srch_id")
                .max()
                .reset_index(drop=False)
            )
            df2.loc[:, "is_no_purchase"] = 1
            df2.loc[:, "log_price"] = 0
            df2.loc[:, "booking_bool"] = 1
            expedia_df = pd.concat([expedia_df, df1, df2])

            logging.info("Sorting the data frame")
            expedia_df = expedia_df.sort_values("srch_id")
            expedia_df.to_csv(
                get_path("preprocessed_expedia_rumnet.csv", module=CACHE_MODULE), index=False
            )

        choices = expedia_df.groupby("srch_id").apply(lambda x: x.booking_bool.argmax())

        logging.info("Creating the Storage objects")
        site_id_dict = {site_id: i for i, site_id in enumerate(expedia_df.site_id.unique())}
        expedia_df["site_id"] = (
            expedia_df["site_id"].apply(lambda x: site_id_dict[x]).astype("uint8")
        )
        site_id_storage = OneHotStorage(ids=expedia_df.site_id.unique(), name="site_id")

        visitor_location_country_id_dict = {
            visitor_location_country_id: i
            for i, visitor_location_country_id in enumerate(
                expedia_df.visitor_location_country_id.unique()
            )
        }
        expedia_df["visitor_location_country_id"] = (
            expedia_df["visitor_location_country_id"]
            .apply(lambda x: visitor_location_country_id_dict[x])
            .astype("uint8")
        )
        visitor_location_country_id_storage = OneHotStorage(
            ids=expedia_df.visitor_location_country_id.unique(),
            name="visitor_location_country_id",
        )

        srch_destination_id_dict = {
            srch_destination_id: i
            for i, srch_destination_id in enumerate(expedia_df.srch_destination_id.unique())
        }
        expedia_df["srch_destination_id"] = (
            expedia_df["srch_destination_id"]
            .apply(lambda x: srch_destination_id_dict[x])
            .astype("uint8")
        )
        srch_destination_id_storage = OneHotStorage(
            ids=expedia_df.srch_destination_id.unique(), name="srch_destination_id"
        )

        prop_country_id_dict = {
            prop_country_id: i
            for i, prop_country_id in enumerate(expedia_df.prop_country_id.unique())
        }
        expedia_df["prop_country_id"] = (
            expedia_df["prop_country_id"].apply(lambda x: prop_country_id_dict[x]).astype("uint8")
        )
        prop_country_id_storage = OneHotStorage(
            ids=expedia_df.prop_country_id.unique(), name="prop_country_id"
        )

        logging.info("DF to NDarray and creating the ChoiceDataset object")
        contexts_features_names = [
            "srch_id",
            "srch_length_of_stay",
            "srch_adults_count",
            "srch_children_count",
            "srch_room_count",
            "srch_saturday_night_bool",
            "booking_window",
            "random_bool",
            "day_of_week",
            "month",
            "hour",
            "site_id",
            "visitor_location_country_id",
            "srch_destination_id",
        ]

        contexts_features = expedia_df[contexts_features_names].drop_duplicates()
        contexts_features = contexts_features.set_index("srch_id")
        contexts_features = (
            contexts_features[contexts_features_names[1:-3]].to_numpy(),
            contexts_features[contexts_features_names[-3:]].to_numpy(),
        )

        contexts_items_features_names = [
            "srch_id",
            "prop_starrating",
            "prop_review_score",
            "prop_brand_bool",
            "prop_location_score1",
            "prop_location_score2",
            "prop_log_historical_price",
            "position",
            "promotion_flag",
            "orig_destination_distance",
            "log_price",
            "prop_country_id",
        ]

        contexts_items_features = (
            expedia_df[contexts_items_features_names]
            .groupby("srch_id")
            .apply(lambda x: x[contexts_items_features_names[1:-1]].to_numpy())
        )
        contexts_items_features = np.stack(contexts_items_features)

        contexts_items_prop_country_id = (
            expedia_df[contexts_items_features_names]
            .groupby("srch_id")
            .apply(lambda x: x[contexts_items_features_names[-1:]].to_numpy())
        )
        contexts_items_prop_country_id = np.stack(contexts_items_prop_country_id)
        contexts_items_features = (contexts_items_features, contexts_items_prop_country_id)

        contexts_items_availabilities = (
            expedia_df[["srch_id", "av"]].groupby("srch_id").apply(lambda x: x["av"].to_numpy())
        )

        return ChoiceDataset(
            shared_features_by_choice=contexts_features,
            items_features_by_choice=contexts_items_features,
            features_by_ids=[
                site_id_storage,
                visitor_location_country_id_storage,
                srch_destination_id_storage,
                prop_country_id_storage,
            ],
            choices=choices.to_numpy(),
            shared_features_by_choice_names=(
                contexts_features_names[1:-3],
                [
                    "site_id",
                    "visitor_location_country_id",
                    "srch_destination_id",
                ],
            ),
            items_features_by_choice_names=(
                contexts_items_features_names[1:-1],
                ["prop_country_id"],
            ),
            available_items_by_choice=np.stack(contexts_items_availabilities.to_numpy()),
        )

    raise ValueError(
        f"Preprocessing {preprocessing} not recognized, only 'rumnet' currently available"
    )