ResLogit Model
Implementation of ResLogit for easy use.
ResLayer
Bases: Layer
The residual layer class.
Source code in choice_learn/models/reslogit.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
__init__(layer_width=None, activation='softplus')
Initialize the ResLayer class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layer_width |
int
|
Width of the layer, by default None If None, the width of the layer is the same as the input shape |
None
|
activation |
str
|
Activation function to use in the layer, by default "softplus" |
'softplus'
|
Source code in choice_learn/models/reslogit.py
build(input_shape)
Create the state of the layer (weights).
The build() method is automatically invoked by the first call() to the layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple
|
Shape of the input of the layer. Typically (batch_size, num_features) Batch_size (None) is ignored, but num_features is the shape of the input |
required |
Source code in choice_learn/models/reslogit.py
call(input)
Return the output of the residual layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
Variable
|
Input of the residual layer |
required |
Returns:
Type | Description |
---|---|
Variable
|
Output of the residual layer |
Source code in choice_learn/models/reslogit.py
compute_output_shape(input_shape)
Compute the output shape of the layer.
Automatically used when calling ResLayer.call() to infer the shape of the output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple
|
Shape of the input of the layer. Typically (batch_size, num_features) Batch_size (None) is ignored, but num_features is the shape of the input |
required |
Returns:
Type | Description |
---|---|
tuple
|
Shape of the output of the layer |
Source code in choice_learn/models/reslogit.py
get_activation_function(name)
Get an activation function from its str name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Name of the function to apply. |
required |
Returns:
Type | Description |
---|---|
function
|
Tensorflow function to apply. |
Source code in choice_learn/models/reslogit.py
ResLogit
Bases: ChoiceModel
The ResLogit class.
Source code in choice_learn/models/reslogit.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
trainable_weights
property
Trainable weights of the model.
__init__(intercept='item', n_layers=16, res_layers_width=None, activation='softplus', label_smoothing=0.0, optimizer='SGD', tolerance=1e-08, lr=0.001, epochs=1000, batch_size=32, logmin=1e-05, **kwargs)
Initialize the ResLogit class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
intercept |
Type of intercept to use, by default None |
'item'
|
|
n_layers |
int
|
Number of residual layers. |
16
|
res_layers_width |
list of int
|
Width of the hidden residual layers, by default None If None, all the residual layers have the same width (n_items) The length of the list should be equal to n_layers - 1 The last element of the list should be equal to n_items |
None
|
activation |
str
|
Activation function to use in the residual layers, by default "softplus" |
'softplus'
|
label_smoothing |
float
|
Whether (then is ]O, 1[ value) or not (then can be None or 0) to use label smoothing |
0.0
|
optimizer |
String representation of the TensorFlow optimizer to be used for estimation, by default "SGD" Should be within tf.keras.optimizers |
'SGD'
|
|
tolerance |
float
|
Tolerance for the L-BFGS optimizer if applied, by default 1e-8 |
1e-08
|
lr |
Learning rate for the optimizer if applied, by default 0.001 |
0.001
|
|
epochs |
(Max) Number of epochs to train the model, by default 1000 |
1000
|
|
batch_size |
Batch size in the case of stochastic gradient descent optimizer Not used in the case of L-BFGS optimizer, by default 32 |
32
|
|
logmin |
float
|
Value to be added within log computation to avoid infinity, by default 1e-5 |
1e-05
|
Source code in choice_learn/models/reslogit.py
compute_batch_utility(shared_features_by_choice, items_features_by_choice, available_items_by_choice, choices)
Compute utility from a batch of ChoiceDataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
shared_features_by_choice |
tuple of np.ndarray (choices_features)
|
a batch of shared features Shape must be (n_choices, n_shared_features) |
required |
items_features_by_choice |
tuple of np.ndarray (choices_items_features)
|
a batch of items features Shape must be (n_choices, n_items, n_items_features) |
required |
available_items_by_choice |
ndarray
|
A batch of items availabilities Shape must be (n_choices, n_items) |
required |
choices |
ndarray
|
Choices Shape must be (n_choices, ) |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Computed utilities of shape (n_choices, n_items) |
Source code in choice_learn/models/reslogit.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
|
fit(choice_dataset, get_report=False, **kwargs)
Fit to estimate the parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
choice_dataset |
ChoiceDataset
|
Choice dataset to use for the estimation. |
required |
get_report |
Whether or not to compute a report of the estimation, by default False |
False
|
Returns:
Name | Type | Description |
---|---|---|
fit |
dict
|
dict with fit history |
Source code in choice_learn/models/reslogit.py
instantiate(n_items, n_shared_features, n_items_features)
Instantiate the model from ModelSpecification object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_items |
int
|
Number of items/aternatives to consider |
required |
n_shared_features |
int
|
Number of contexts features |
required |
n_items_features |
int
|
Number of contexts items features |
required |
Returns:
Name | Type | Description |
---|---|---|
indexes |
dict
|
Dictionary of the indexes of the weights created |
weights |
list of tf.Variable
|
List of the weights created coresponding to the specification |
Source code in choice_learn/models/reslogit.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|