TasteNet Model
TasteNet model unofficial implementation.
TasteNet
Bases: ChoiceModel
UnOfficial implementation of the TasteNet model.
A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability, by Han, Y.; Calara Oereuran F.; Ben-Akiva, M.; Zegras, C. (2020).
Source code in choice_learn/models/tastenet.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
trainable_weights
property
Argument to access the future trainable_weights throught the taste net.
Returns:
Type | Description |
---|---|
list
|
List of trainable weights. |
__init__(taste_net_layers, taste_net_activation, items_features_by_choice_parametrization, exp_paramater_mu=1.0, **kwargs)
Initialize of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
taste_net_layers |
list of ints
|
Width of the different layer to use in the taste network. |
required |
taste_net_activation |
str
|
Activation function to use in the taste network. |
required |
items_features_by_choice_parametrization |
list of lists
|
List of list of strings or floats. Each list corresponds to the features of an item. Each string is the name of an activation function to apply to the feature. Each float is a constant to multiply the feature by. e.g. for the swissmetro that has 3 items with 4 features each: [[-1., "-exp", "-exp", 0., "linear", 0., 0.], [-1., "-exp", "-exp", "linear", 0., "linear", 0.], [-1., "-exp", 0., 0., 0., 0., 0.]] |
required |
exp_paramater_mu |
float
|
Parameter of the exponential function to use in the items_features_by_choice_parametrization. x = exp(x / exp_paramater_mu), default is 1.0. |
1.0
|
Source code in choice_learn/models/tastenet.py
compute_batch_utility(shared_features_by_choice, items_features_by_choice, available_items_by_choice, choices)
Define how the model computes the utility of a product.
MUST be implemented in children classe ! For simpler use-cases this is the only method to be user-defined.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
shared_features_by_choice |
tuple of np.ndarray (choices_features)
|
a batch of shared features Shape must be (n_choices, n_shared_features) |
required |
items_features_by_choice |
tuple of np.ndarray (choices_items_features)
|
a batch of items features Shape must be (n_choices, n_items_features) |
required |
available_items_by_choice |
ndarray
|
A batch of items availabilities Shape must be (n_choices, n_items) |
required |
choices_batch |
ndarray
|
Choices Shape must be (n_choices, ) |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Utility of each product for each choice. Shape must be (n_choices, n_items) |
Source code in choice_learn/models/tastenet.py
fit(choice_dataset, **kwargs)
Fit to estimate the paramters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
choice_dataset |
ChoiceDataset
|
Choice dataset to use for the estimation. |
required |
Returns:
Type | Description |
---|---|
dict
|
dict with fit history. |
Source code in choice_learn/models/tastenet.py
get_activation_function(name)
Get a normalization function from its str name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Name of the function to apply. |
required |
Returns:
Type | Description |
---|---|
function
|
Tensorflow function to apply. |
Source code in choice_learn/models/tastenet.py
instantiate(n_shared_features)
Instantiate the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_shared_features |
int
|
Number of shared_features or customer features. It is needed to set-up the neural network input shape. |
required |
Source code in choice_learn/models/tastenet.py
predict_tastes(shared_features_by_choice)
Predict the tastes of the model for a given dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
shared_features_by_choice |
ndarray
|
Shared Features by choice. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Taste of each product for each choice. Shape is (n_choices, n_taste_parameters) |
Source code in choice_learn/models/tastenet.py
get_feed_forward_net(input_width, output_width, layers_width, activation)
Get a feed-forward neural network.