pipeline_checks
Pipelines
Bases: CustomBaseModel
Model to validate multiple pipelines at once
Source code in deployer/pipeline_checks.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
Pipeline
Bases: CustomBaseModel
Validation of one pipeline and its configs
Source code in deployer/pipeline_checks.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
populate_config_names
classmethod
populate_config_names(data: Any) -> Any
Populate config names before validation
Source code in deployer/pipeline_checks.py
63 64 65 66 67 68 69 70 71 |
|
pipeline
property
pipeline: GraphComponent
Import pipeline
import_pipeline
import_pipeline()
Validate that the pipeline can be imported by calling pipeline computed field
Source code in deployer/pipeline_checks.py
84 85 86 87 88 89 90 91 92 |
|
compile_pipeline
compile_pipeline()
Validate that the pipeline can be compiled
Source code in deployer/pipeline_checks.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
validate_configs
validate_configs(info: ValidationInfo)
Validate configs against pipeline parameters definition
Source code in deployer/pipeline_checks.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
ConfigsDynamicModel
Bases: CustomBaseModel
, Generic[PipelineConfigT]
Model used to generate checks for configs based on pipeline dynamic model
Source code in deployer/pipeline_checks.py
48 49 50 51 |
|
ConfigDynamicModel
Bases: CustomBaseModel
, Generic[PipelineConfigT]
Model used to generate checks for configs based on pipeline dynamic model
Source code in deployer/pipeline_checks.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
load_config_if_empty
classmethod
load_config_if_empty(data: Any) -> Any
Load config if it is empty
Source code in deployer/pipeline_checks.py
35 36 37 38 39 40 41 42 43 44 45 |
|
_convert_artifact_type_to_str
_convert_artifact_type_to_str(annotation: type) -> type
Convert a kfp.dsl.Artifact type to a string.
This is mandatory for type checking, as kfp.dsl.Artifact types should be passed as strings to VertexAI. See https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.PipelineJob for details.
Source code in deployer/pipeline_checks.py
145 146 147 148 149 150 151 152 153 154 155 |
|