Skip to content

VertexPipelineDeployer

deployer.pipeline_deployer.VertexPipelineDeployer

Deployer for Vertex Pipelines

Source code in deployer/pipeline_deployer.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
class VertexPipelineDeployer:
    """Deployer for Vertex Pipelines"""

    def __init__(
        self,
        pipeline_name: str,
        pipeline_func: Callable,
        run_name: Optional[str] = None,
        project_id: Optional[str] = None,
        region: Optional[str] = None,
        staging_bucket_name: Optional[str] = None,
        service_account: Optional[str] = None,
        gar_location: Optional[str] = None,
        gar_repo_id: Optional[str] = None,
        local_package_path: Optional[Path] = None,
    ) -> None:
        """I don't want to write a dostring here but ruff wants me to"""
        self.project_id = project_id
        self.region = region
        self.staging_bucket_name = staging_bucket_name
        self.service_account = service_account

        self.pipeline_name = pipeline_name
        self.run_name = run_name
        self.pipeline_func = pipeline_func

        self.gar_location = gar_location
        self.gar_repo_id = gar_repo_id
        self.local_package_path = Path(local_package_path)

        self.template_name = None
        self.version_name = None

        aiplatform.init(
            project=self.project_id,
            staging_bucket=f"gs://{self.staging_bucket_name}",
        )

    @property
    def gar_host(self) -> Optional[str]:
        """Return the Artifact Registry host if the location and repo ID are provided"""
        if self.gar_location is not None and self.gar_repo_id is not None:
            return os.path.join(
                f"https://{self.gar_location}-kfp.pkg.dev", self.project_id, self.gar_repo_id
            )
        logger.debug(
            "No Artifact Registry location or repo ID provided: not using Artifact Registry"
        )
        return None

    @property
    def staging_bucket_uri(self) -> str:  # noqa: D102
        return f"gs://{self.staging_bucket_name}/root"

    def _get_template_path(self, tag: Optional[str] = None) -> str:
        """Return the path to the pipeline template

        If the Artifact Registry host is provided, return the path to the pipeline template in
        the Artifact Registry. Otherwise, return the path to the pipeline template in the
        local package.
        """
        if self.gar_host is not None:
            if self.template_name is not None and self.version_name is not None:
                return os.path.join(self.gar_host, self.template_name, self.version_name)

            if tag:
                return os.path.join(self.gar_host, self.pipeline_name.replace("_", "-"), tag)

            logger.warning(
                "tag or template_name and version_name not provided."
                " Falling back to local package."
            )

        return os.path.join(str(self.local_package_path), f"{self.pipeline_name}.yaml")

    def _check_gar_host(self) -> None:
        if self.gar_host is None:
            raise MissingGoogleArtifactRegistryHostError(
                "Google Artifact Registry host is missing. "
                "Please provide gar_location and gar_repo_id."
            )

    def _check_experiment_name(self, experiment_name: Optional[str] = None) -> str:
        if experiment_name is None:
            experiment_name = f"{self.pipeline_name}-experiment".replace("_", "-")
            logger.info(f"Experiment name not provided, using {experiment_name}")
        else:
            experiment_name = experiment_name.replace("_", "-")

        return experiment_name

    def _check_run_name(self, tag: Optional[str] = None) -> None:
        """Each run name (job_id) must be unique.
        We thus always add a timestamp to ensure uniqueness.
        """
        now_str = datetime.now().strftime("%Y%m%d-%H%M%S")
        if self.run_name is None:
            self.run_name = f"{self.pipeline_name}"
            if tag:
                self.run_name += f"-{tag}"

        self.run_name = self.run_name.replace("_", "-")
        self.run_name += f"-{now_str}"

        if not constants.VALID_RUN_NAME_PATTERN.match(self.run_name):
            raise ValueError(
                f"Run name {self.run_name} does not match the pattern"
                f" {constants.VALID_RUN_NAME_PATTERN.pattern}"
            )
        logger.debug(f"run_name is: {self.run_name}")

    def _create_pipeline_job(
        self,
        template_path: str,
        enable_caching: Optional[bool] = None,
        parameter_values: Optional[dict] = None,
        input_artifacts: Optional[dict] = None,
    ) -> aiplatform.PipelineJob:
        """Create a pipeline job object

        Args:
            template_path (str): The path of PipelineJob or PipelineSpec JSON or YAML file. If the
                Artifact Registry host is provided, this is the path to the pipeline template in
                the Artifact Registry. Otherwise, this is the path to the pipeline template in
                the local package.
            enable_caching (Optional[bool], optional): Whether to turn on caching for the run.
                If this is not set, defaults to the compile time settings, which are True for all
                tasks by default, while users may specify different caching options for individual
                tasks.
                If this is set, the setting applies to all tasks in the pipeline.
                Overrides the compile time settings. Defaults to None.
            parameter_values (Optional[dict], optional): The mapping from runtime parameter names
                to its values that control the pipeline run. Defaults to None.
            input_artifacts (Optional[dict], optional): The mapping from the runtime parameter
                name for this artifact to its resource id.
                For example: "vertex_model":"456".
                Note: full resource name ("projects/123/locations/us-central1/metadataStores/default/artifacts/456")
                    cannot be used. Defaults to None.

        Returns:
            aiplatform.PipelineJob: The pipeline job object
        """  # noqa: E501
        job = aiplatform.PipelineJob(
            display_name=self.pipeline_name,
            job_id=self.run_name,
            template_path=template_path,
            pipeline_root=self.staging_bucket_uri,
            location=self.region,
            enable_caching=enable_caching,
            parameter_values=parameter_values,
            input_artifacts=input_artifacts,
        )
        return job

    def compile(self) -> VertexPipelineDeployer:
        """Compile pipeline and save it to the local package path using kfp compiler"""
        self.local_package_path.mkdir(parents=True, exist_ok=True)
        pipeline_filepath = self.local_package_path / f"{self.pipeline_name}.yaml"

        compiler.Compiler().compile(
            pipeline_func=self.pipeline_func,
            package_path=str(pipeline_filepath),
        )
        logger.info(f"Pipeline {self.pipeline_name} compiled to {pipeline_filepath}")

        return self

    def upload_to_registry(
        self,
        tags: List[str] = ["latest"],  # noqa: B006
    ) -> VertexPipelineDeployer:
        """Upload pipeline to Artifact Registry"""
        self._check_gar_host()
        client = RegistryClient(host=self.gar_host)
        template_name, version_name = client.upload_pipeline(
            file_name=self.local_package_path / f"{self.pipeline_name}.yaml",
            tags=tags,
        )
        logger.info(f"Pipeline {self.pipeline_name} uploaded to {self.gar_host} with tags {tags}")
        self.template_name = template_name
        self.version_name = version_name
        return self

    def run(
        self,
        enable_caching: Optional[bool] = None,
        parameter_values: Optional[dict] = None,
        input_artifacts: Optional[dict] = None,
        experiment_name: Optional[str] = None,
        tag: Optional[str] = None,
    ) -> VertexPipelineDeployer:
        """Run pipeline on Vertex AI Pipelines

        If the experiment name is not provided, use the pipeline name with the suffix
        "-experiment". Compiled pipeline file is the one uploaded on artifact registry if the
        host is provided, and if either the tag or the template_name and version_name are
        provided. Otherwise, use the pipeline file in the local package.

        Args:
            enable_caching (Optional[bool], optional): Whether to turn on caching for the run.
                If this is not set, defaults to the compile time settings, which are True for all
                tasks by default, while users may specify different caching options for individual
                tasks.
                If this is set, the setting applies to all tasks in the pipeline.
                Overrides the compile time settings. Defaults to None.
            parameter_values (Optional[dict], optional): The mapping from runtime parameter names
                to its values that control the pipeline run. Defaults to None.
            input_artifacts (Optional[dict], optional): The mapping from the runtime parameter
                name for this artifact to its resource id.
                For example: "vertex_model":"456".
                Note: full resource name ("projects/123/locations/us-central1/metadataStores/default/artifacts/456")
                    cannot be used. Defaults to None.
            experiment_name (str, optional): Experiment name. Defaults to None.
            tag (str, optional): Tag of the pipeline template. Defaults to None.
        """  # noqa: E501
        experiment_name = self._check_experiment_name(experiment_name)
        self._check_run_name(tag=tag)
        template_path = self._get_template_path(tag)

        logger.debug(
            f"Running pipeline '{self.pipeline_name}' with settings:"
            f"\n {'template_path':<20} {template_path:<30}"
            f"\n {'enable_caching':<20} {enable_caching!s:<30}"
            f"\n {'experiment_name':<20} {experiment_name:<30}"
        )

        job = self._create_pipeline_job(
            template_path=template_path,
            enable_caching=enable_caching,
            parameter_values=parameter_values,
            input_artifacts=input_artifacts,
        )

        try:
            job.submit(
                experiment=experiment_name,
                service_account=self.service_account,
            )
        except RuntimeError as e:  # HACK: This is a temporary fix
            if "could not be associated with Experiment" in str(e):
                logger.warning(
                    f"Encountered an error while linking your job {job.job_id}"
                    f" with experiment {experiment_name}."
                    " This is likely due to a bug in the AI Platform Pipelines client."
                    " Your job should be running anyway. Try to link it manually."
                )
            else:
                raise e

        return self

    def compile_upload_run(
        self,
        enable_caching: Optional[bool] = None,
        parameter_values: Optional[dict] = None,
        experiment_name: Optional[str] = None,
        tags: Optional[List[str]] = None,
    ) -> VertexPipelineDeployer:
        """Compile, upload and run pipeline on Vertex AI Pipelines"""
        self.compile()

        if self.gar_host is not None:
            self.upload_to_registry(tags)

        self.run(
            enable_caching=enable_caching,
            parameter_values=parameter_values,
            experiment_name=experiment_name,
            tag=tags[0] if tags else None,
        )
        return self

    def schedule(
        self,
        cron: str,
        enable_caching: Optional[bool] = None,
        parameter_values: Optional[dict] = None,
        tag: Optional[str] = None,
        delete_last_schedule: bool = False,
        scheduler_timezone: str = "Europe/Paris",
    ) -> VertexPipelineDeployer:
        """Create pipeline schedule on Vertex AI Pipelines

        Compiled pipeline file is the one uploaded on artifact registry if the host is provided,
        and if either the tag or the template_name and version_name are provided.

        Args:
            cron (str): Cron expression without TZ.
            enable_caching (bool, optional): Whether to enable caching. Defaults to False.
            parameter_values (dict, optional): Pipeline parameter values. Defaults to None.
            tag (str, optional): Tag of the pipeline template. Defaults to None.
            delete_last_schedule (bool, optional): Whether to delete previous schedule.
                Defaults to False.
            scheduler_timezone (str, optional): Scheduler timezone. Must be a valid string from
                IANA time zone database. Defaults to 'Europe/Paris'.
        """
        self._check_gar_host()

        schedule_display_name = f"schedule-{self.pipeline_name}"
        schedules_list = PipelineJobSchedule.list(
            filter=f'display_name="{schedule_display_name}"',
            order_by="create_time desc",
            location=self.region,
        )

        logger.info(
            f"There are {len(schedules_list)} schedules defined for pipeline {self.pipeline_name}"
        )
        if len(schedules_list) > 0 and delete_last_schedule:
            logger.info(
                f"Deleting schedule {schedules_list[0].display_name}"
                f" for pipeline {self.pipeline_name} at {schedules_list[0].cron}"
            )
            schedules_list[0].delete()

        if tag:
            client = RegistryClient(host=self.gar_host)
            package_name = self.pipeline_name.replace("_", "-")
            try:
                tag_metadata = client.get_tag(package_name=package_name, tag=tag)
            except HTTPError as e:
                tags_list = client.list_tags(package_name)
                tags_list_parsed = [x["name"].split("/")[-1] for x in tags_list]
                raise TagNotFoundError(
                    f"Tag {tag} not found for package {self.gar_host}/{package_name}.\
                        Available tags: {tags_list_parsed}"
                ) from e

            pipeline_version_sha = tag_metadata["version"].split("/")[-1]

            template_path = self._get_template_path(pipeline_version_sha)
        else:
            template_path = self._get_template_path()

        logger.info(
            f"Creating schedule for pipeline {self.pipeline_name} at {cron}"
            f" with template {template_path}"
        )

        job = self._create_pipeline_job(
            template_path=template_path,
            enable_caching=enable_caching,
            parameter_values=parameter_values,
        )

        # HACK: Must set location or it will default to "us-central1" (or project default)
        pipeline_job_schedule = PipelineJobSchedule(
            pipeline_job=job,
            display_name=schedule_display_name,
            location=self.region,
        )

        pipeline_job_schedule.create(
            cron=f"TZ={scheduler_timezone} {cron}",
            service_account=self.service_account,
        )

        return self

gar_host property

gar_host: Optional[str]

Return the Artifact Registry host if the location and repo ID are provided

compile

Compile pipeline and save it to the local package path using kfp compiler

Source code in deployer/pipeline_deployer.py
176
177
178
179
180
181
182
183
184
185
186
187
def compile(self) -> VertexPipelineDeployer:
    """Compile pipeline and save it to the local package path using kfp compiler"""
    self.local_package_path.mkdir(parents=True, exist_ok=True)
    pipeline_filepath = self.local_package_path / f"{self.pipeline_name}.yaml"

    compiler.Compiler().compile(
        pipeline_func=self.pipeline_func,
        package_path=str(pipeline_filepath),
    )
    logger.info(f"Pipeline {self.pipeline_name} compiled to {pipeline_filepath}")

    return self

upload_to_registry

upload_to_registry(
    tags: List[str] = ["latest"],
) -> VertexPipelineDeployer

Upload pipeline to Artifact Registry

Source code in deployer/pipeline_deployer.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def upload_to_registry(
    self,
    tags: List[str] = ["latest"],  # noqa: B006
) -> VertexPipelineDeployer:
    """Upload pipeline to Artifact Registry"""
    self._check_gar_host()
    client = RegistryClient(host=self.gar_host)
    template_name, version_name = client.upload_pipeline(
        file_name=self.local_package_path / f"{self.pipeline_name}.yaml",
        tags=tags,
    )
    logger.info(f"Pipeline {self.pipeline_name} uploaded to {self.gar_host} with tags {tags}")
    self.template_name = template_name
    self.version_name = version_name
    return self

run

run(
    enable_caching: Optional[bool] = None,
    parameter_values: Optional[dict] = None,
    input_artifacts: Optional[dict] = None,
    experiment_name: Optional[str] = None,
    tag: Optional[str] = None,
) -> VertexPipelineDeployer

Run pipeline on Vertex AI Pipelines

If the experiment name is not provided, use the pipeline name with the suffix "-experiment". Compiled pipeline file is the one uploaded on artifact registry if the host is provided, and if either the tag or the template_name and version_name are provided. Otherwise, use the pipeline file in the local package.

Parameters:

Name Type Description Default
enable_caching Optional[bool]

Whether to turn on caching for the run. If this is not set, defaults to the compile time settings, which are True for all tasks by default, while users may specify different caching options for individual tasks. If this is set, the setting applies to all tasks in the pipeline. Overrides the compile time settings. Defaults to None.

None
parameter_values Optional[dict]

The mapping from runtime parameter names to its values that control the pipeline run. Defaults to None.

None
input_artifacts Optional[dict]

The mapping from the runtime parameter name for this artifact to its resource id. For example: "vertex_model":"456". Note: full resource name ("projects/123/locations/us-central1/metadataStores/default/artifacts/456") cannot be used. Defaults to None.

None
experiment_name str

Experiment name. Defaults to None.

None
tag str

Tag of the pipeline template. Defaults to None.

None
Source code in deployer/pipeline_deployer.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def run(
    self,
    enable_caching: Optional[bool] = None,
    parameter_values: Optional[dict] = None,
    input_artifacts: Optional[dict] = None,
    experiment_name: Optional[str] = None,
    tag: Optional[str] = None,
) -> VertexPipelineDeployer:
    """Run pipeline on Vertex AI Pipelines

    If the experiment name is not provided, use the pipeline name with the suffix
    "-experiment". Compiled pipeline file is the one uploaded on artifact registry if the
    host is provided, and if either the tag or the template_name and version_name are
    provided. Otherwise, use the pipeline file in the local package.

    Args:
        enable_caching (Optional[bool], optional): Whether to turn on caching for the run.
            If this is not set, defaults to the compile time settings, which are True for all
            tasks by default, while users may specify different caching options for individual
            tasks.
            If this is set, the setting applies to all tasks in the pipeline.
            Overrides the compile time settings. Defaults to None.
        parameter_values (Optional[dict], optional): The mapping from runtime parameter names
            to its values that control the pipeline run. Defaults to None.
        input_artifacts (Optional[dict], optional): The mapping from the runtime parameter
            name for this artifact to its resource id.
            For example: "vertex_model":"456".
            Note: full resource name ("projects/123/locations/us-central1/metadataStores/default/artifacts/456")
                cannot be used. Defaults to None.
        experiment_name (str, optional): Experiment name. Defaults to None.
        tag (str, optional): Tag of the pipeline template. Defaults to None.
    """  # noqa: E501
    experiment_name = self._check_experiment_name(experiment_name)
    self._check_run_name(tag=tag)
    template_path = self._get_template_path(tag)

    logger.debug(
        f"Running pipeline '{self.pipeline_name}' with settings:"
        f"\n {'template_path':<20} {template_path:<30}"
        f"\n {'enable_caching':<20} {enable_caching!s:<30}"
        f"\n {'experiment_name':<20} {experiment_name:<30}"
    )

    job = self._create_pipeline_job(
        template_path=template_path,
        enable_caching=enable_caching,
        parameter_values=parameter_values,
        input_artifacts=input_artifacts,
    )

    try:
        job.submit(
            experiment=experiment_name,
            service_account=self.service_account,
        )
    except RuntimeError as e:  # HACK: This is a temporary fix
        if "could not be associated with Experiment" in str(e):
            logger.warning(
                f"Encountered an error while linking your job {job.job_id}"
                f" with experiment {experiment_name}."
                " This is likely due to a bug in the AI Platform Pipelines client."
                " Your job should be running anyway. Try to link it manually."
            )
        else:
            raise e

    return self

compile_upload_run

compile_upload_run(
    enable_caching: Optional[bool] = None,
    parameter_values: Optional[dict] = None,
    experiment_name: Optional[str] = None,
    tags: Optional[List[str]] = None,
) -> VertexPipelineDeployer

Compile, upload and run pipeline on Vertex AI Pipelines

Source code in deployer/pipeline_deployer.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def compile_upload_run(
    self,
    enable_caching: Optional[bool] = None,
    parameter_values: Optional[dict] = None,
    experiment_name: Optional[str] = None,
    tags: Optional[List[str]] = None,
) -> VertexPipelineDeployer:
    """Compile, upload and run pipeline on Vertex AI Pipelines"""
    self.compile()

    if self.gar_host is not None:
        self.upload_to_registry(tags)

    self.run(
        enable_caching=enable_caching,
        parameter_values=parameter_values,
        experiment_name=experiment_name,
        tag=tags[0] if tags else None,
    )
    return self

schedule

schedule(
    cron: str,
    enable_caching: Optional[bool] = None,
    parameter_values: Optional[dict] = None,
    tag: Optional[str] = None,
    delete_last_schedule: bool = False,
    scheduler_timezone: str = "Europe/Paris",
) -> VertexPipelineDeployer

Create pipeline schedule on Vertex AI Pipelines

Compiled pipeline file is the one uploaded on artifact registry if the host is provided, and if either the tag or the template_name and version_name are provided.

Parameters:

Name Type Description Default
cron str

Cron expression without TZ.

required
enable_caching bool

Whether to enable caching. Defaults to False.

None
parameter_values dict

Pipeline parameter values. Defaults to None.

None
tag str

Tag of the pipeline template. Defaults to None.

None
delete_last_schedule bool

Whether to delete previous schedule. Defaults to False.

False
scheduler_timezone str

Scheduler timezone. Must be a valid string from IANA time zone database. Defaults to 'Europe/Paris'.

'Europe/Paris'
Source code in deployer/pipeline_deployer.py
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def schedule(
    self,
    cron: str,
    enable_caching: Optional[bool] = None,
    parameter_values: Optional[dict] = None,
    tag: Optional[str] = None,
    delete_last_schedule: bool = False,
    scheduler_timezone: str = "Europe/Paris",
) -> VertexPipelineDeployer:
    """Create pipeline schedule on Vertex AI Pipelines

    Compiled pipeline file is the one uploaded on artifact registry if the host is provided,
    and if either the tag or the template_name and version_name are provided.

    Args:
        cron (str): Cron expression without TZ.
        enable_caching (bool, optional): Whether to enable caching. Defaults to False.
        parameter_values (dict, optional): Pipeline parameter values. Defaults to None.
        tag (str, optional): Tag of the pipeline template. Defaults to None.
        delete_last_schedule (bool, optional): Whether to delete previous schedule.
            Defaults to False.
        scheduler_timezone (str, optional): Scheduler timezone. Must be a valid string from
            IANA time zone database. Defaults to 'Europe/Paris'.
    """
    self._check_gar_host()

    schedule_display_name = f"schedule-{self.pipeline_name}"
    schedules_list = PipelineJobSchedule.list(
        filter=f'display_name="{schedule_display_name}"',
        order_by="create_time desc",
        location=self.region,
    )

    logger.info(
        f"There are {len(schedules_list)} schedules defined for pipeline {self.pipeline_name}"
    )
    if len(schedules_list) > 0 and delete_last_schedule:
        logger.info(
            f"Deleting schedule {schedules_list[0].display_name}"
            f" for pipeline {self.pipeline_name} at {schedules_list[0].cron}"
        )
        schedules_list[0].delete()

    if tag:
        client = RegistryClient(host=self.gar_host)
        package_name = self.pipeline_name.replace("_", "-")
        try:
            tag_metadata = client.get_tag(package_name=package_name, tag=tag)
        except HTTPError as e:
            tags_list = client.list_tags(package_name)
            tags_list_parsed = [x["name"].split("/")[-1] for x in tags_list]
            raise TagNotFoundError(
                f"Tag {tag} not found for package {self.gar_host}/{package_name}.\
                    Available tags: {tags_list_parsed}"
            ) from e

        pipeline_version_sha = tag_metadata["version"].split("/")[-1]

        template_path = self._get_template_path(pipeline_version_sha)
    else:
        template_path = self._get_template_path()

    logger.info(
        f"Creating schedule for pipeline {self.pipeline_name} at {cron}"
        f" with template {template_path}"
    )

    job = self._create_pipeline_job(
        template_path=template_path,
        enable_caching=enable_caching,
        parameter_values=parameter_values,
    )

    # HACK: Must set location or it will default to "us-central1" (or project default)
    pipeline_job_schedule = PipelineJobSchedule(
        pipeline_job=job,
        display_name=schedule_display_name,
        location=self.region,
    )

    pipeline_job_schedule.create(
        cron=f"TZ={scheduler_timezone} {cron}",
        service_account=self.service_account,
    )

    return self