Classification Extractors
ExtraTreesRulesClassifier
¶
Bases: RulesExtractorClassifierMixin, ExtraTreesClassifier
Rules extractor applied with a ExtraTreesClassifier.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_estimators
|
int
|
The number of trees in the forest. |
100
|
criterion
|
(gini, entropy, log_loss)
|
The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity, "entropy" for the information gain and "log_loss" for the reduction in log loss. |
"gini"
|
max_depth
|
int
|
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. |
2
|
class_weight
|
(balanced, balanced_subsample)
|
Weights associated with classes in the form {class_label: weight}. If None, all classes are supposed to have weight one. |
"balanced"
|
splitter
|
(best, random, quantile)
|
The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. "quantile" is similar to "best" but the split point is chosen to be a a value in the training set and not the beetween to values as for best and random. |
"best"
|
p0
|
float
|
The threshold for rule selection. |
0.01
|
max_n_rules
|
int
|
The maximum number of rules to extract. |
25
|
quantile
|
int
|
The number of quantiles to use for the "quantile" splitter. |
10
|
to_not_binarize_colindexes
|
list of int
|
List of column indexes to not binarize when extracting the rules. |
None
|
starting_index_one_hot
|
int
|
Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules). |
None
|
Attributes:
| Name | Type | Description |
|---|---|---|
rules_ |
list
|
List of all possible rules extracted from the forest. |
Source code in woodtapper/extract_rules/classification_extractors.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | |
GBRulesClassifier
¶
Bases: RulesExtractorClassifierMixin, GradientBoostingClassifier
Class for rules extraction from a GradientBoostingClassifier
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_estimators
|
int
|
The number of trees in the forest. |
100
|
learning_rate
|
float
|
Learning rate shrinks the contribution of each tree by
|
0.1
|
loss
|
(log_loss, deviance)
|
The loss function to be optimized. 'log_loss' refers to logistic regression for classification with probabilistic outputs. |
'log_loss'
|
criterion
|
(gini, entropy, log_loss)
|
The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity, "entropy" for the information gain and "log_loss" for the reduction in log loss. |
"gini"
|
max_depth
|
int
|
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. |
2
|
splitter
|
(best, random, quantile)
|
The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. "quantile" is similar to "best" but the split point is chosen to be a a value in the training set and not the beetween to values as for best and random. |
"best"
|
p0
|
float
|
The threshold for rule selection. |
0.01
|
max_n_rules
|
int
|
The maximum number of rules to extract. |
25
|
quantile
|
int
|
The number of quantiles to use for the "quantile" splitter. |
10
|
to_not_binarize_colindexes
|
list of int
|
List of column indexes to not binarize when extracting the rules. |
None
|
starting_index_one_hot
|
int
|
Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules). |
None
|
Attributes:
| Name | Type | Description |
|---|---|---|
rules_ |
list
|
List of all possible rules extracted from the forest. |
Source code in woodtapper/extract_rules/classification_extractors.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | |
QuantileDecisionTreeRegressor
¶
Bases: DecisionTreeRegressor
DecisionTreeRegressor of scikit -learn with the "quantile" spliiter option. Used for GradientBoostingClassifier in GBRulesClassifier
Source code in woodtapper/extract_rules/classification_extractors.py
250 251 252 253 254 255 256 257 | |
SirusClassifier
¶
Bases: RulesExtractorClassifierMixin, RandomForestClassifier
SIRUS class applied with a RandomForestClassifier.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_estimators
|
int
|
The number of trees in the forest. |
100
|
criterion
|
(gini, entropy, log_loss)
|
The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity, "entropy" for the information gain and "log_loss" for the reduction in log loss. |
"gini"
|
max_depth
|
int
|
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. |
2
|
class_weight
|
(balanced, balanced_subsample)
|
Weights associated with classes in the form {class_label: weight}. If None, all classes are supposed to have weight one. |
"balanced"
|
splitter
|
(best, random, quantile)
|
The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. "quantile" is similar to "best" but the split point is chosen to be a a value in the training set and not the beetween to values as for best and random. |
"best"
|
p0
|
float
|
The threshold for rule selection. |
0.01
|
max_n_rules
|
int
|
The maximum number of rules to extract. |
25
|
quantile
|
int
|
The number of quantiles to use for the "quantile" splitter. |
10
|
to_not_binarize_colindexes
|
list of int
|
List of column indexes to not binarize when extracting the rules. |
None
|
starting_index_one_hot
|
int
|
Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules). |
None
|
Attributes:
| Name | Type | Description |
|---|---|---|
rules_ |
list
|
List of all possible rules extracted from the forest. |
Source code in woodtapper/extract_rules/classification_extractors.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | |