Skip to content

Regression Extractors

ExtraTreesRulesRegressor

Bases: RulesExtractorRegressorMixin, ExtraTreesRegressor

Rules extractor applied with a ExtraTreeRegressor.

Parameters:

Name Type Description Default
n_estimators int

The number of trees in the forest.

100
criterion (gini, entropy, log_loss)

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity, "entropy" for the information gain and "log_loss" for the reduction in log loss.

"gini"
max_depth int

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

2
splitter (best, random, quantile)

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. "quantile" is similar to "best" but the split point is chosen to be a a value in the training set and not the beetween to values as for best and random.

"best"
p0 float

The threshold for rule selection.

0.01
max_n_rules int

The maximum number of rules to extract.

25
quantile int

The number of quantiles to use for the "quantile" splitter.

10
to_not_binarize_colindexes list of int

List of column indexes to not binarize when extracting the rules.

None
starting_index_one_hot int

Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules).

None

Attributes:

Name Type Description
rules_ list

List of all possible rules extracted from the forest.

ridge ridge regression model fitted on the rules
Source code in woodtapper/extract_rules/regression_extractors.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
class ExtraTreesRulesRegressor(RulesExtractorRegressorMixin, ExtraTreesRegressor):
    """
    Rules extractor applied with a ExtraTreeRegressor.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.
    criterion : {"gini", "entropy", "log_loss"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity, "entropy" for the information gain and
        "log_loss" for the reduction in log loss.
    max_depth : int, default=2
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than min_samples_split samples.
    splitter : {"best", "random", "quantile"}, default="quantile"
        The strategy used to choose the split at each node. Supported strategies
        are "best" to choose the best split and "random" to choose the best random
        split. "quantile" is similar to "best" but the split point is chosen to
        be a a value in the training set and not the beetween to values as for best and random.
    p0 : float, default=0.01
        The threshold for rule selection.
    max_n_rules : int, default=25
        The maximum number of rules to extract.
    quantile : int, default=10
        The number of quantiles to use for the "quantile" splitter.
    to_not_binarize_colindexes : list of int, default=None
        List of column indexes to not binarize when extracting the rules.
    starting_index_one_hot : int, default=None
        Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules).

    Attributes
    ----------
    rules_ : list
        List of all possible rules extracted from the forest.
    ridge: ridge regression model fitted on the rules

    """

    _parameter_constraints: dict = {**ExtraTreesRegressor._parameter_constraints}
    _parameter_constraints["splitter"] = [StrOptions({"best", "random", "quantile"})]

    def __init__(
        self,
        n_estimators=100,
        *,
        criterion="squared_error",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=1.0,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=False,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        ccp_alpha=0.0,
        max_samples=None,
        monotonic_cst=None,
        splitter="quantile",
        p0=0.01,
        max_n_rules=25,
        quantile=10,
        to_not_binarize_colindexes=None,
        starting_index_one_hot=None,
    ):
        super(ForestRegressor, self).__init__(
            estimator=ExtraTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=(
                "criterion",
                "max_depth",
                "min_samples_split",
                "min_samples_leaf",
                "min_weight_fraction_leaf",
                "max_features",
                "max_leaf_nodes",
                "min_impurity_decrease",
                "random_state",
                "ccp_alpha",
                "monotonic_cst",
            ),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=max_samples,
        )

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.ccp_alpha = ccp_alpha
        self.monotonic_cst = monotonic_cst
        self.splitter = splitter
        self.p0 = p0
        self.max_n_rules = max_n_rules
        self.quantile = quantile
        self.to_not_binarize_colindexes = to_not_binarize_colindexes
        self.starting_index_one_hot = starting_index_one_hot  # index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules)

GBRulesRegressor

Bases: RulesExtractorRegressorMixin, GradientBoostingRegressor

Class for rules extraction from a GradientBoostingRegressor

Parameters:

Name Type Description Default
n_estimators int

The number of trees in the forest.

100
learning_rate float

Learning rate shrinks the contribution of each tree by learning_rate. There is a trade-off between learning_rate and

0.1
loss (log_loss, deviance)

The loss function to be optimized. 'log_loss' refers to logistic regression for classification with probabilistic outputs.

'log_loss'
criterion (gini, entropy, log_loss)

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity, "entropy" for the information gain and "log_loss" for the reduction in log loss.

"gini"
max_depth int

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

2
splitter (best, random, quantile)

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. "quantile" is similar to "best" but the split point is chosen to be a a value in the training set and not the beetween to values as for best and random.

"best"
p0 float

The threshold for rule selection.

0.01
max_n_rules int

The maximum number of rules to extract.

25
quantile int

The number of quantiles to use for the "quantile" splitter.

10
to_not_binarize_colindexes list of int

List of column indexes to not binarize when extracting the rules.

None
starting_index_one_hot int

Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules).

None

Attributes:

Name Type Description
rules_ list

List of all possible rules extracted from the forest.

ridge ridge regression model fitted on the rules
Source code in woodtapper/extract_rules/regression_extractors.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
class GBRulesRegressor(RulesExtractorRegressorMixin, GradientBoostingRegressor):
    """
    Class for rules extraction from a GradientBoostingRegressor
    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.
    learning_rate : float, default=0.1
        Learning rate shrinks the contribution of each tree by
        `learning_rate`. There is a trade-off between learning_rate and
    loss : {'log_loss', 'deviance'}, default='log_loss'
        The loss function to be optimized. 'log_loss' refers to
        logistic regression for classification with probabilistic outputs.
    criterion : {"gini", "entropy", "log_loss"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity, "entropy" for the information gain and
        "log_loss" for the reduction in log loss.
    max_depth : int, default=2
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than min_samples_split samples.
    splitter : {"best", "random", "quantile"}, default="quantile"
        The strategy used to choose the split at each node. Supported strategies
        are "best" to choose the best split and "random" to choose the best random
        split. "quantile" is similar to "best" but the split point is chosen to
        be a a value in the training set and not the beetween to values as for best and random.
    p0 : float, default=0.01
        The threshold for rule selection.
    max_n_rules : int, default=25
        The maximum number of rules to extract.
    quantile : int, default=10
        The number of quantiles to use for the "quantile" splitter.
    to_not_binarize_colindexes : list of int, default=None
        List of column indexes to not binarize when extracting the rules.
    starting_index_one_hot : int, default=None
        Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules).
    Attributes
    ----------
    rules_ : list
        List of all possible rules extracted from the forest.
    ridge: ridge regression model fitted on the rules

    """

    _parameter_constraints: dict = {**GradientBoostingRegressor._parameter_constraints}
    _parameter_constraints["splitter"] = [StrOptions({"best", "random", "quantile"})]

    def __init__(
        self,
        *,
        loss="squared_error",
        learning_rate=0.1,
        n_estimators=100,
        subsample=1.0,
        criterion="friedman_mse",
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_depth=3,
        min_impurity_decrease=0.0,
        init=None,
        random_state=None,
        max_features=None,
        alpha=0.9,
        verbose=0,
        max_leaf_nodes=None,
        warm_start=False,
        validation_fraction=0.1,
        n_iter_no_change=None,
        tol=1e-4,
        ccp_alpha=0.0,
        splitter="quantile",
        p0=0.01,
        max_n_rules=25,
        quantile=10,
        to_not_binarize_colindexes=None,
        starting_index_one_hot=None,
    ):
        super().__init__(
            loss=loss,
            learning_rate=learning_rate,
            n_estimators=n_estimators,
            criterion=criterion,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth,
            init=init,
            subsample=subsample,
            max_features=max_features,
            min_impurity_decrease=min_impurity_decrease,
            random_state=random_state,
            alpha=alpha,
            verbose=verbose,
            max_leaf_nodes=max_leaf_nodes,
            warm_start=warm_start,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change,
            tol=tol,
            ccp_alpha=ccp_alpha,
        )
        self.splitter = splitter
        self.p0 = p0
        self.max_n_rules = max_n_rules
        self.quantile = quantile
        self.to_not_binarize_colindexes = to_not_binarize_colindexes
        self.starting_index_one_hot = starting_index_one_hot  # index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules)

    def _fit_stage(
        self,
        i,
        X,
        y,
        raw_predictions,
        sample_weight,
        sample_mask,
        random_state,
        X_csc=None,
        X_csr=None,
    ):
        """Fit another stage of ``n_trees_per_iteration_`` trees."""
        original_y = y

        if isinstance(self._loss, HuberLoss):
            set_huber_delta(
                loss=self._loss,
                y_true=y,
                raw_prediction=raw_predictions,
                sample_weight=sample_weight,
            )
        # TODO: Without oob, i.e. with self.subsample = 1.0, we could call
        # self._loss.loss_gradient and use it to set train_score_.
        # But note that train_score_[i] is the score AFTER fitting the i-th tree.
        # Note: We need the negative gradient!
        neg_gradient = -self._loss.gradient(
            y_true=y,
            raw_prediction=raw_predictions,
            sample_weight=None,  # We pass sample_weights to the tree directly.
        )
        # 2-d views of shape (n_samples, n_trees_per_iteration_) or (n_samples, 1)
        # on neg_gradient to simplify the loop over n_trees_per_iteration_.
        if neg_gradient.ndim == 1:
            neg_g_view = neg_gradient.reshape((-1, 1))
        else:
            neg_g_view = neg_gradient

        for k in range(self.n_trees_per_iteration_):
            if self._loss.is_multiclass:
                y = np.array(original_y == k, dtype=np.float64)

            # induce regression tree on the negative gradient
            tree = QuantileDecisionTreeRegressor(
                criterion=self.criterion,
                splitter=self.splitter,  ## ici
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                min_impurity_decrease=self.min_impurity_decrease,
                max_features=self.max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                random_state=random_state,
                ccp_alpha=self.ccp_alpha,
            )

            if self.subsample < 1.0:
                # no inplace multiplication!
                sample_weight = sample_weight * sample_mask.astype(np.float64)

            X = X_csc if X_csc is not None else X
            tree.fit(
                X, neg_g_view[:, k], sample_weight=sample_weight, check_input=False
            )

            # update tree leaves
            X_for_tree_update = X_csr if X_csr is not None else X
            _update_terminal_regions(
                self._loss,
                tree.tree_,
                X_for_tree_update,
                y,
                neg_g_view[:, k],
                raw_predictions,
                sample_weight,
                sample_mask,
                learning_rate=self.learning_rate,
                k=k,
            )

            # add tree to ensemble
            self.estimators_[i, k] = tree

        return raw_predictions

SirusRegressor

Bases: RulesExtractorRegressorMixin, RandomForestRegressor

SIRUS class applied with a RandomForestRegressor.

Parameters:

Name Type Description Default
n_estimators int

The number of trees in the forest.

100
criterion (gini, entropy, log_loss)

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity, "entropy" for the information gain and "log_loss" for the reduction in log loss.

"gini"
max_depth int

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

2
splitter (best, random, quantile)

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. "quantile" is similar to "best" but the split point is chosen to be a a value in the training set and not the beetween to values as for best and random.

"best"
p0 float

The threshold for rule selection.

0.01
max_n_rules int

The maximum number of rules to extract.

25
quantile int

The number of quantiles to use for the "quantile" splitter.

10
to_not_binarize_colindexes list of int

List of column indexes to not binarize when extracting the rules.

None
starting_index_one_hot int

Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules).

None

Attributes:

Name Type Description
rules_ list

List of all possible rules extracted from the forest.

ridge ridge regression model fitted on the rules
Source code in woodtapper/extract_rules/regression_extractors.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
class SirusRegressor(RulesExtractorRegressorMixin, RandomForestRegressor):
    """
    SIRUS class applied with a RandomForestRegressor.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.
    criterion : {"gini", "entropy", "log_loss"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity, "entropy" for the information gain and
        "log_loss" for the reduction in log loss.
    max_depth : int, default=2
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than min_samples_split samples.
    splitter : {"best", "random", "quantile"}, default="quantile"
        The strategy used to choose the split at each node. Supported strategies
        are "best" to choose the best split and "random" to choose the best random
        split. "quantile" is similar to "best" but the split point is chosen to
        be a a value in the training set and not the beetween to values as for best and random.
    p0 : float, default=0.01
        The threshold for rule selection.
    max_n_rules : int, default=25
        The maximum number of rules to extract.
    quantile : int, default=10
        The number of quantiles to use for the "quantile" splitter.
    to_not_binarize_colindexes : list of int, default=None
        List of column indexes to not binarize when extracting the rules.
    starting_index_one_hot : int, default=None
        Index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules).

    Attributes
    ----------
    rules_ : list
        List of all possible rules extracted from the forest.
    ridge: ridge regression model fitted on the rules

    """

    _parameter_constraints: dict = {**RandomForestRegressor._parameter_constraints}
    _parameter_constraints["splitter"] = [StrOptions({"best", "random", "quantile"})]

    def __init__(
        self,
        n_estimators=100,
        *,
        criterion="squared_error",
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=1.0,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=True,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        verbose=0,
        warm_start=False,
        ccp_alpha=0.0,
        max_samples=None,
        monotonic_cst=None,
        splitter="quantile",
        p0=0.01,
        max_n_rules=25,
        quantile=10,
        to_not_binarize_colindexes=None,
        starting_index_one_hot=None,
    ):
        super(ForestRegressor, self).__init__(
            estimator=DecisionTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=(
                "criterion",
                "max_depth",
                "min_samples_split",
                "min_samples_leaf",
                "min_weight_fraction_leaf",
                "max_features",
                "max_leaf_nodes",
                "min_impurity_decrease",
                "random_state",
                "ccp_alpha",
                "monotonic_cst",
                "splitter",
            ),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=max_samples,
        )

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.ccp_alpha = ccp_alpha
        self.monotonic_cst = monotonic_cst
        self.splitter = splitter
        self.p0 = p0
        self.max_n_rules = max_n_rules
        self.quantile = quantile
        self.to_not_binarize_colindexes = to_not_binarize_colindexes
        self.starting_index_one_hot = starting_index_one_hot  # index of the first one-hot encoded variable in the dataset (to handle correctly the binarization of the rules)