Source code for nlpretext.textloader

# Copyright (C) 2020 Artefact
# licence-information@artefact.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
from types import ModuleType
from typing import Any, List, Optional, Union

import sys
import warnings

import pandas as pd

try:
    from nlpretext._utils import daskloader
except ImportError:
    warnings.warn(
        "Dask not found, switching to pandas. To be able to use Dask, run : pip install nlpretext[dask]",  # noqa: E501
        stacklevel=2,
    )

from nlpretext._utils import pandasloader
from nlpretext._utils.file_loader import check_text_file_format
from nlpretext.preprocessor import Preprocessor


[docs]class TextLoader: def __init__(self, text_column="text", encoding="utf-8", file_format=None, use_dask=True): """ Initialize DataLoader object to retrieve text data. Parameters ---------- text_column: string name of the column containing texts in json / csv / parquet files encoding: string encoding of the text to be loaded, can be utf-8 or latin-1 for example file_format: string | None format of the files to be loaded use_dask: bool use dask to load text """ self.text_column = text_column self.encoding = encoding self.file_format = file_format self.use_dask = use_dask self.loader: ModuleType if self.use_dask: if "dask" in sys.modules: self.loader = daskloader else: warnings.warn( "Dask is not intalled, switching to pandas. Run pip install dask to use dask", stacklevel=2, ) self.use_dask = False self.loader = pandasloader else: self.loader = pandasloader def __repr__(self): """Method to represent class attributes.""" class_repr_dict = { "text_column": self.text_column, "encoding": self.encoding, "file_format": self.file_format, "use_dask": self.use_dask, } return f"TextLoader({class_repr_dict})" def _read_text_txt(self, files_path): """ Read txt text files stored in files_path. Parameters ---------- files_path : string | list[string] single or multiple files path Returns ------- dask.dataframe | pandas.DataFrame """ text_ddf = self.loader.read_text(files_path, encoding=self.encoding) text_ddf.columns = [self.text_column] return text_ddf def _read_text_json(self, files_path): """ Read json text files stored in files_path. Parameters ---------- files_path : string | list[string] single or multiple files path Returns ------- dask.dataframe | pandas.DataFrame """ text_ddf = self.loader.read_json(files_path, encoding=self.encoding) try: return text_ddf[[self.text_column]] except KeyError as e: raise KeyError(f"Specified text_column '{self.text_column}' not in file keys") from e def _read_text_csv(self, files_path): """ Read csv text files stored in files_path. Parameters ---------- files_path : string | list[string] single or multiple files path Returns ------- dask.dataframe | pandas.DataFrame """ text_ddf = self.loader.read_csv(files_path, encoding=self.encoding) try: return text_ddf[[self.text_column]] except KeyError as e: raise KeyError(f"Specified text_column '{self.text_column}' not in file keys") from e def _read_text_parquet(self, files_path): """ Read parquet text files stored in files_path. Parameters ---------- files_path : string | list[string] single or multiple files path Returns ------- dask.dataframe | pandas.DataFrame """ text_ddf = self.loader.read_parquet(files_path, encoding=self.encoding) try: return text_ddf[[self.text_column]] except KeyError as e: raise KeyError(f"Specified text_column '{self.text_column}' not in file keys") from e
[docs] def read_text( self, files_path: Union[str, List[str]], file_format: Optional[str] = None, encoding: Optional[str] = None, compute_to_pandas: bool = True, preprocessor: Optional[Preprocessor] = None, ) -> Union[pd.DataFrame, Any]: """ Read the text files stored in files_path. Parameters ---------- files_path: string | list[string] single or multiple files path file_format: string Format of the files to be loaded, to be selected among csv, json, parquet or txt encoding: encoding of the text to be loaded, can be utf-8 or latin-1 for example compute_to_pandas: bool True if user wants Dask Dataframe to be computed as pandas DF, False otherwise preprocessor: nlpretext.preprocessor.Preprocessor NLPretext preprocessor can be specified to pre-process text after loading Returns ------- dask.dataframe | pandas.DataFrame """ if encoding is not None: self.encoding = encoding if file_format is not None: self.file_format = file_format else: self.file_format = check_text_file_format(files_path) reader_mapping = { "csv": self._read_text_csv, "txt": self._read_text_txt, "json": self._read_text_json, "parquet": self._read_text_parquet, } reader = reader_mapping.get(self.file_format) if reader is None: raise ValueError("Format not handled") text = reader(files_path) if preprocessor is not None: if isinstance(preprocessor, Preprocessor): print(f"before: {text.head()}") text[self.text_column] = text[self.text_column].apply(preprocessor.run) print(f"after: {text.head()}") else: raise ValueError("Only NLPretext preprocessors can be specified") if compute_to_pandas and self.use_dask: return text.compute() return text